Package: mashr 0.2.81
mashr: Multivariate Adaptive Shrinkage
Implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <doi:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.
Authors:
mashr_0.2.81.tar.gz
mashr_0.2.81.zip(r-4.5)mashr_0.2.81.zip(r-4.4)mashr_0.2.81.zip(r-4.3)
mashr_0.2.81.tgz(r-4.4-x86_64)mashr_0.2.81.tgz(r-4.4-arm64)mashr_0.2.81.tgz(r-4.3-x86_64)mashr_0.2.81.tgz(r-4.3-arm64)
mashr_0.2.81.tar.gz(r-4.5-noble)mashr_0.2.81.tar.gz(r-4.4-noble)
mashr_0.2.81.tgz(r-4.4-emscripten)mashr_0.2.81.tgz(r-4.3-emscripten)
mashr.pdf |mashr.html✨
mashr/json (API)
# Install 'mashr' in R: |
install.packages('mashr', repos = c('https://stephenslab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stephenslab/mashr/issues
Last updated 13 days agofrom:cd086f7eaa. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | NOTE | Nov 07 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 07 2024 |
R-4.4-win-x86_64 | NOTE | Nov 07 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 07 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 07 2024 |
R-4.3-win-x86_64 | NOTE | Nov 07 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 07 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 07 2024 |
Exports:contrast_matrixcov_canonicalcov_edcov_flashcov_pcacov_udiestimate_null_correlation_simpleextreme_deconvolutionget_estimated_piget_log10bfget_n_significant_conditionsget_pairwise_sharingget_pairwise_sharing_from_samplesget_posterior_condition_wise_summaryget_samplesget_significant_resultsmashmash_1by1mash_compute_loglikmash_compute_posterior_matricesmash_compute_vloglikmash_estimate_corr_emmash_plot_metamash_set_datamash_update_datasim_contrast1sim_contrast2simple_simssimple_sims2
Dependencies:abindashrassertthatetrunctinvgammairlbalatticeMatrixmixsqpmvtnormplyrRcppRcppArmadilloRcppGSLrmetasoftImputeSQUAREMtruncnorm
Empirical Bayes matrix factorization for data driven prior
Rendered fromflash_mash.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2023-08-16
Started: 2018-09-21
mashr with common baseline
Rendered fromintro_mashcommonbaseline.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2021-05-19
Started: 2018-10-09
mashr with common baseline at mean
Rendered fromintro_mashbaselinemean.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2020-10-27
Started: 2020-10-27
Introduction to mashr
Rendered fromintro_mash.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2022-12-07
Started: 2017-05-31
Accounting for correlations among measurements
Rendered fromintro_correlations.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2022-12-07
Started: 2018-05-28
Introduction to mash: data-driven covariances
Rendered fromintro_mash_dd.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2018-05-29
Started: 2017-05-31
Simulation with non-canonical matrices
Rendered fromsimulate_noncanon.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2017-12-15
Started: 2017-05-31
Sample from mash posteriors
Rendered frommash_sampling.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2022-01-21
Started: 2018-11-06
eQTL analysis outline
Rendered fromeQTL_outline.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2022-12-07
Started: 2018-05-28