
Package: mixsqp (via r-universe)
September 12, 2024

Encoding UTF-8

Type Package

Version 0.3-54

Date 2023-12-20

Title Sequential Quadratic Programming for Fast Maximum-Likelihood
Estimation of Mixture Proportions

URL https://github.com/stephenslab/mixsqp

BugReports https://github.com/stephenslab/mixsqp/issues

Depends R (>= 3.3.0)

Description Provides an optimization method based on sequential
quadratic programming (SQP) for maximum likelihood estimation
of the mixture proportions in a finite mixture model where the
component densities are known. The algorithm is expected to
obtain solutions that are at least as accurate as the
state-of-the-art MOSEK interior-point solver (called by
function ``KWDual'' in the 'REBayes' package), and they are
expected to arrive at solutions more quickly when the number of
samples is large and the number of mixture components is not
too large. This implements the ``mix-SQP'' algorithm, with some
improvements, described in Y. Kim, P. Carbonetto, M. Stephens &
M. Anitescu (2020) <DOI:10.1080/10618600.2019.1689985>.

License MIT + file LICENSE

Imports utils, stats, irlba, Rcpp (>= 0.12.15)

Suggests testthat, knitr, rmarkdown

LinkingTo Rcpp, RcppArmadillo

LazyData true

NeedsCompilation yes

VignetteBuilder knitr

RoxygenNote 7.1.2

Repository https://stephenslab.r-universe.dev

1

https://github.com/stephenslab/mixsqp
https://github.com/stephenslab/mixsqp/issues
https://doi.org/10.1080/10618600.2019.1689985

2 mixobjective

RemoteUrl https://github.com/stephenslab/mixsqp

RemoteRef HEAD

RemoteSha 5146a57b2e2ae8a1ba2254bd8724998b87a92772

Contents
mixsqp-package . 2
mixobjective . 2
mixsqp . 3
simulatemixdata . 7
tacks . 8

Index 10

mixsqp-package mixsqp: Sequential Quadratic Programming for Fast Maximum-
Likelihood Estimation of Mixture Proportions

Description

Provides optimization algorithms based on sequential quadratic programming (SQP) for maximum
likelihood estimation of the mixture proportions in a finite mixture model where the component
densities are known. To learn more, visit https://github.com/stephenslab/mixsqp, and see
the help for function mixsqp.

mixobjective Compute objective optimized by mixsqp.

Description

See mixsqp for a full description of the objective function optimized by the mix-SQP algorithm.

Usage

mixobjective(L, x, w = rep(1, nrow(L)))

Arguments

L Matrix specifying the optimization problem to be solved. In the context of
mixture-model fitting, L[j,k] should be the value of the kth mixture compo-
nent density at the jth data point. L should be a numeric matrix with at least
two columns, with all entries being non-negative and finite (and not missing).
Further, no column should be entirely zeros. For large matrices, it is preferrable
that the matrix is stored in double-precision; see storage.mode.

https://github.com/stephenslab/mixsqp

mixsqp 3

x The point at which the objective is evaluated in mixobjective; see argument
x0 in mixsqp for details.

w An optional numeric vector, with one entry for each row of L, specifying the
"weights" associated with the rows of L. All weights must be finite, non-negative
and not missing. Internally, the weights are normalized to sum to 1, which does
not change the problem, but does change the value of the objective function
reported. By default, all weights are equal.

Value

The value of the objective at x. If any entry of L %*% x is less than or equal to zero, Inf is returned.

See Also

mixsqp

mixsqp Maximum-likelihood estimation of mixture proportions using SQP

Description

The mixsqp function uses a Sequential Quadratic Programming (SQP) algorithm to find the max-
imum likelihood estimates of mixture proportions in a (finite) mixture model. More generally,
mixsqp solves the corresponding constrained, convex optimization problem, which is given below
(see ‘Details’). See ‘References’ for more details about the SQP algorithm.

Usage

mixsqp(
L,
w = rep(1, nrow(L)),
x0 = rep(1, ncol(L)),
log = FALSE,
control = list()

)

mixsqp_control_default()

Arguments

L Matrix specifying the optimization problem to be solved. In the context of
mixture-model fitting, L[j,k] should be the value of the kth mixture compo-
nent density at the jth data point. L should be a numeric matrix with at least
two columns, with all entries being non-negative and finite (and not missing).
In some cases, it is easier or more natural to compute log(L); for example, it
is often easier to compute the log-likelihood rather than the likelihood. Setting
log = TRUE will tell mixsqp to interpret this input as the logarithm of the data
matrix. Note that, for large matrices, it is preferrable that the matrix is stored in
double-precision; see storage.mode.

4 mixsqp

w An optional numeric vector, with one entry for each row of L, specifying the
"weights" associated with the rows of L. All weights must be finite, non-negative
and not missing. Internally, the weights are normalized to sum to 1, which does
not change the problem, but does change the value of the objective function
reported. By default, all weights are equal.

x0 An optional numeric vector providing an initial estimate of the solution to the
optimization problem. It should contain only finite, non-missing, non-negative
values, and all entries of L %*% x0 must be greater than zero (to ensure that the
objective evaluates to a finite value at x0). The vector will be normalized to sum
to 1. By default, x0 is the vector with all equal values.

log When log = TRUE, the input matrix L is interpreted as containing the logarithm
of the data matrix.

control A list of parameters controlling the behaviour of the optimization algorithm. See
‘Details’.

Details

mixsqp solves the following optimization problem. Let L be a matrix with n rows and m columns
containing only non-negative entries, and let w = (w1, . . . , wn) be a vector of non-negative "weights".
mixsqp computes the value of vector x = (x1, . . . , xm) minimizing the following objective func-
tion,

f(x) = −
n∑

j=1

wj log(

m∑
k=1

Ljkxk),

subject to the constraint that x lie within the simplex; that is, the entries of x are non-negative and
sum to 1. Implicitly, there is an additional constraint L ∗ x > 0 in order to ensure that the objective
has a finite value. In practice, this constraint only needs to be checked for the initial estimate to
ensure that it holds for all subsequent iterates.

If all weights are equal, solving this optimization problem corresponds to finding the maximum-
likelihood estimate of the mixture proportions x given n independent data points drawn from a
mixture model with m components. In this case, Ljk is the likelihood for mixture component k and
data point j.

The Expectation Maximization (EM) algorithm can be used to solve this optimization problem, but
it is intolerably slow in many interesting cases, and mixsqp is much faster.

A special feature of this optimization problem is that the gradient of the objective does not change
with re-scaling; for example, if all the entries of matrix L are multiplied by 100, the gradient does
not change. A practical benefit of this property is that the optimization algorithm will behave
similarly irrespective of the scale of L; for example, the same value for the convergence tolerance
convtol.sqp will have the same effect at different scales.

A related feature is that the solution to the optimization problem is invariant to rescaling the rows
of L; for example, the solution will remain the same after all the entries in a row of L are multiplied
by 10. A simple normalization scheme divides each row by the largest entry in the row so that all
entries of L are at most 1: L <- L / apply(L,1,max) Occasionally, it can be helpful to normalize
the rows when some of the entries are unusually large or unusually small. This can help to avoid
numerical overflow or underflow errors.

The SQP algorithm is implemented using the Armadillo C++ linear algebra library, which can
automatically take advantage of multithreaded matrix computations to speed up mixsqp for large L

mixsqp 5

matrices, but only when R has been configured with a multithreaded BLAS/LAPACK library (e.g.,
OpenBLAS).

A "debugging mode" is provided to aid in reproducing convergence failures or other issues. When
activated, mixsqp will generate an .RData file containing the exact mixsqp inputs, and will stop exe-
cution upon convergence failure. To activate the debugging mode, run options(mixsqp.debug.mode
= TRUE) prior to calling mixsqp. By default, the output file is mixsqp.RData; the file can be changed
by setting the "mixsqp.debug.file" global option.

The control argument is a list in which any of the following named components will override the
default optimization algorithm settings (as they are defined by mixsqp_control_default):

normalize.rows When normalize.rows = TRUE, the rows of the data matrix L are automatically
scaled so that the largest entry in each row is 1. This is the recommended setting for better
stability of the optimization. When log = TRUE, this setting is ignored becase the rows are
already normalized. Note that the objective is computed on the original (unnormalized) matrix
to make the results easier to interpret.

tol.svd Setting used to determine rank of truncated SVD approximation for L. The rank of the
truncated singular value decomposition is determined by the number of singular values sur-
passing tol.svd. When tol.svd = 0 or when L has 4 or fewer columns, all computations are
performed using full L matrix.

convtol.sqp A small, non-negative number specifying the convergence tolerance for SQP algo-
rithm; convergence is reached when the maximum dual residual in the Karush-Kuhn-Tucker
(KKT) optimality conditions is less than or equal to convtol.sqp. Smaller values will re-
sult in more stringent convergence criteria and more accurate solutions, at the expense of
greater computation time. Note that changes to this tolerance parameter may require respec-
tive changes to convtol.activeset and/or zero.threshold.searchdir to obtain reliable
convergence.

convtol.activeset A small, non-negative number specifying the convergence tolerance for the
active-set step. Smaller values will result in higher quality search directions for the SQP
algorithm but possibly a greater per-iteration computational cost. Note that changes to this
tolerance parameter can affect how reliably the SQP convergence criterion is satisfied, as
determined by convtol.sqp.

zero.threshold.solution A small, non-negative number used to determine the "active set"; that
is, it determines which entries of the solution are exactly zero. Any entries that are less than
or equal to zero.threshold.solution are considered to be exactly zero. Larger values of
zero.threshold.solution may lead to speedups for matrices with many columns, at the
(slight) risk of prematurely zeroing some co-ordinates.

zero.threshold.searchdir A small, non-negative number used to determine when the search di-
rection in the active-set step is considered "small enough". Note that changes to this tolerance
parameter can affect how reliably the SQP convergence criterion is satisfied, as determined by
convtol.sqp, so choose this parameter carefully.

suffdecr.linesearch This parameter determines how stringent the "sufficient decrease" condi-
tion is for accepting a step size in the backtracking line search. Larger values will make the
condition more stringent. This should be a positive number less than 1.

stepsizereduce The multiplicative factor for decreasing the step size in the backtracking line
search. Smaller values will yield a faster backtracking line search at the expense of a less
fine-grained search. Should be a positive number less than 1.

6 mixsqp

minstepsize The smallest step size accepted by the line search step. Should be a number greater
than 0 and at most 1.

identity.contrib.increase When the Hessian is not positive definite, a multiple of the identity
is added to the Hessian to ensure a unique search direction. The factor for increasing the
identity contribution in this modified Hessian is determined by this control parameter.

eps A small, non-negative number that is added to the terms inside the logarithms to sidestep
computing logarithms of zero. This prevents numerical problems at the cost of introducing a
small inaccuracy in the solution. Increasing this number may lead to faster convergence but
possibly a less accurate solution.

maxiter.sqp Maximum number of SQP iterations to run before reporting a convergence failure;
that is, the maximum number of quadratic subproblems that will be solved by the active-set
method.

maxiter.activeset Maximum number of active-set iterations taken to solve each of the quadratic
subproblems. If NULL, the maximum number of active-set iterations is set to min(20,1 +
ncol(L)).

numiter.em Number of expectation maximization (EM) updates to perform prior to running mix-
SQP. Although EM can often be slow to converge, this "pre-fitting" step can help to obtain a
good initial estimate for mix-SQP at a small cost.

verbose If verbose = TRUE, the algorithm’s progress and a summary of the optimization settings
are printed to the console. The algorithm’s progress is displayed in a table with one row per
SQP (outer loop) iteration, and with the following columns: "iter", the (outer loop) SQP iter-
ation; "objective", the value of the objective function (see f(x)) at the current estimate of the
solution, x; "max(rdual)", the maximum "dual residual" in the Karush-Kuhn-Tucker (KKT)
conditions, which is used to monitor convergence (see convtol.sqp); "nnz", the number of
non-zero co-ordinates in the current estimate, as determined by zero.threshold.solution;
"max.diff", the maximum difference in the estimates between two successive iterations; "nqp",
the number of (inner loop) active-set iterations taken to solve the quadratic subproblem; "nls",
the number of iterations in the backtracking line search.

Value

A list object with the following elements:

x If the SQP algorithm converges, this is the solution to the convex optimization
problem. If the algorithm fails to converge, it is the best estimate of the solution
achieved by the algorithm. Note that if the SQP algorithm terminates before
reaching the solution, x may not satisfy the equality constraint; that is, the entries
of x may not sum to 1.

value The value of the objective function, f(x), at x.

grad The gradient of the objective function at x.

hessian The Hessian of the objective function at x. The truncated SVD approximation
of L is used to compute the Hessian when it is also used for mix-SQP.

status A character string describing the status of the algorithm upon termination.

progress A data frame containing more detailed information about the algorithm’s progress.
The data frame has one row per SQP iteration. For an explanation of the columns,

simulatemixdata 7

see the description of the verbose control parameter in ‘Details’. Missing val-
ues (NA’s) in the last row indicate that these quantities were not computed be-
cause convergence was reached before computing them. Also note that the stor-
age of these quantities in the progress data frame is slightly different than in
the console output (when verbose = TRUE) as the console output shows some
quantities that were computed after the convergence check in the previous itera-
tion.

References

Y. Kim, P. Carbonetto, M. Stephens and M. Anitescu (2020). A fast algorithm for maximum likeli-
hood estimation of mixture proportions using sequential quadratic programming. Journal of Com-
putational and Graphical Statistics 29, 261-273. doi:10.1080/10618600.2019.1689985

See Also

mixobjective

Examples

set.seed(1)
n <- 1e5
m <- 10
w <- rep(1,n)/n
L <- simulatemixdata(n,m)$L
out.mixsqp <- mixsqp(L,w)
f <- mixobjective(L,out.mixsqp$x,w)
print(f,digits = 16)

simulatemixdata Create likelihood matrix from simulated data set

Description

Simulate a data set, then compute the conditional likelihood matrix under a univariate normal likeli-
hood and a mixture-of-normals prior. This models a simple nonparametric Empirical Bayes method
applied to simulated data.

Usage

simulatemixdata(
n,
m,
simtype = c("n", "nt"),
log = FALSE,
normalize.rows = !log

)

https://doi.org/10.1080/10618600.2019.1689985

8 tacks

Arguments

n Positive integer specifying the number of samples to generate and, consequently,
the number of rows of the likelihood matrix L.

m Integer 2 or greater specifying the number of mixture components.

simtype The type of data to simulate. If simtype = "n", simulate n random numbers
from a mixture of three univariate normals with mean zero and standard devia-
tion 1, 3 and 6. If simtype = "nt", simulate from a mixture of three univariate
normals (with zero mean and standard deviations 1, 3 and 5), and a t-distribution
with 2 degrees of freedom.

log If log = TRUE, return the

normalize.rows If normalize.rows = TRUE, normalize the rows of the likelihood matrix so that
the largest entry in each row is 1. The maximum-likelihood estimate of the
mixture weights should be invariant to this normalization, and can improve the
numerical stability of the optimization.

Value

simulatemixdata returns a list with three list elements:

x The vector of simulated random numbers (it has length n).

s The standard deviations of the mixture components in the mixture-of-normals
prior. The rules for selecting the standard deviations are based on the autoselect.mixsd
function from the ashr package.

L The n x m conditional likelihood matrix, in which individual entries (i,j) of the
likelihood matrix are given by the normal density function with mean zero and
variance 1 + s[j]^2. If normalize.rows = TRUE, the entries in each row are
normalized such that the larger entry in each row is 1. If log = TRUE, the matrix
of log-likelihoods is returned.

Examples

Generate the likelihood matrix for a data set with 1,000 samples
and a nonparametric Empirical Bayes model with 20 mixture
components.
dat <- simulatemixdata(1000,20)

tacks Beckett & Diaconis tack rolling example.

Description

This data set contains the likelihood matrix and weights for the Beckett-Diaconis tacks example, in
which the data are modeled using a binomial mixture. These data were generated by running the
"Bmix1" demo from the REBayes package, and saving the arguments passed to KWDual, as well as
the (normalized) solution returned by the KWDual call.

tacks 9

Format

tacks is a list with the following elements:

L 9 x 299 likelihood matrix.

w Numeric vector of length 9 specifying the weights associated with the rows of L.

x Solution provided by the KWDual solver.

Examples

The optimal solution for the tack example is extremely sparse.
data(tacks)
plot(tacks$x,type = "l",col = "royalblue")

Index

∗ data
tacks, 8

mixobjective, 2, 7
mixsqp, 2, 3, 3
mixsqp-package, 2
mixsqp_control_default (mixsqp), 3

simulatemixdata, 7
storage.mode, 2, 3

tacks, 8

10

	mixsqp-package
	mixobjective
	mixsqp
	simulatemixdata
	tacks
	Index

